A result on 2k-cycle-free bipartite graphs

نویسنده

  • Thomas Lam
چکیده

Let G be a bipartite graph with vertex parts of orders N and M , and X edges. I prove that if G has no cycles of length 2l, for all l ∈ [2, 2k], and N ≥ M , then X < M 1 2 N k+1 2k + O(N).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Certain Families of 2k-Cycle-Free Graphs

Let v = v(G) and e = e(G) denote the order and size of a simple graph G, respectively. Let G = {Gi}i≥1 be a family of simple graphs of magnitude r > 1 and constant λ > 0, i.e. e(Gi) = (λ+ o(1))v(Gi), i→∞. For any such family G whose members are bipartite and of girth at least 2k + 2, and every integer t, 2 ≤ t ≤ k − 1, we construct a family G̃t of graphs of same magnitude r, of constant greater ...

متن کامل

A Note on Bipartite Graphs without 2k-Cycles

We address the question of the maximum number ex(m,n, C2k) of edges in an m by n bipartite graph without a cycle of length 2k. We prove that for each k ≥ 2, ex(m,n, C2k) ≤    (2k − 3) [ (mn) k+1 k + m + n ] if k is odd. (2k − 3) [ m k+2 k n 1 2 + m + n ] if k is even.

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

A generalization of Villarreal's result for unmixed tripartite graphs

‎In this paper we give a characterization of unmixed tripartite‎ ‎graphs under certain conditions which is a generalization of a‎ ‎result of Villarreal on bipartite graphs‎. ‎For bipartite graphs two‎ ‎different characterizations were given by Ravindra and Villarreal‎. ‎We show that these two characterizations imply each other‎.

متن کامل

Restricted 2 { factors in Bipartite

The k{restricted 2{factor problem is that of nding a spanning subgraph consisting of disjoint cycles with no cycle of length less than or equal to k. It is a generalization of the well known Hamilton cycle problem and is equivalent to this problem when n 2 k n ? 1. This paper considers necessary and suucient conditions, algorithms, and polyhedral conditions for 2{factors in bipartite graphs and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2005